AP Calculus AB + BC: Full Set

Chapter: 0~10 


10% 할인
로그인
무엇을 배울까요?
AP Calculus AB/BC
Unit 0. Prerequisites
Unit 1. Limits and Continuity
Unit 2. Differentiation: Definition and Fundamental Properties
Unit 3. Differentiation: Composite, Implicit, and Inverse Functions
Unit 4. Contextual Applications of Differentiation
Unit 5. Analytical Applications of Differentiation
Unit 6. Integration and Accumulation of Change
Unit 7. Differential Equations
Unit 8. Applications of Integration
Unit 9. Parametric Equations, Polar Coordinates, and Vector-Valued Functions
Unit 10. Infinite Sequences and Series
커리큘럼
  • 0.2.1 Definition of exponentials and Exponential Laws
    19:06
  • 0.2.2 Definition of logarithms and logarithm laws
    18:25
  • 0.3.1 Definition and the use of binomial theorem
    23:06
  • 0.4.1 Review of Trigonometry
    58:25
  • 0.5.1 Simple Introduction to Calculus
    22:22
  • 0.6.1 Easy
    0
  • 0.6.2 Intermediate
    0
  • 0.6.3 Hard
    0
  • 1.2.1 Definition of Continuity at a point
    10:32
  • 1.2.2 Types of Discontinuities
    12:37
  • 1.2.3 Confirming Continuity over an Interval
    12:52
  • 1.2.4 Removing Discontinuities
    15:59
  • 1.2.5 Connecting Infinite Limits and Vertical/Horizontal Asymptotes
    15:25
  • 1.2.6 Working with the Intermediate Value Theorem (IVT)
    10:30
  • 1.3.1 Easy
    0
  • 1.3.2 Intermediate
    0
  • 1.3.3 Hard
    0
  • 2.2.1 Basic differentiation laws - how to differentiate various types of functions? (ft. power rule, constant, sum/difference, constant, trigonomtry,exponentials, logarithms, product rule, quotient rule)
    19:14
  • 2.2.2 The meaning of the derivative at a specific point
    20:41
  • 2.3.1 Easy
    0
  • 2.3.2 Intermediate
    0
  • 2.3.3 Hard
    0
  • 3.2.1 Differentiating Inverse Functions
    06:30
  • 3.3.1 Calculating Higher Order Derivatives
    13:44
  • 3.3.2 Selecting Procedures for Calculating Derivatives
    15:13
  • 3.4.1 Easy
    0
  • 3.4.2 Intermediate
    0
  • 3.4.3 Hard
    0
  • 4.2.1 Related Rates
    07:16
  • 4.3.1 L'Hopital's Rule
    07:51
  • 4.4.1 Easy
    0
  • 4.4.2 Intermediate
    0
  • 4.4.3 Hard
    0
  • 5.1.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points
    18:00
  • 5.1.3 Increasing/Decreasing Functions: Determining Intervals on Which a Function is Increasing or Decreasing
    11:15
  • 5.1.4 First Derivative Test: Using the First Derivative Test to Determine Local Extrema
    08:05
  • 5.1.5 Global Extrema: Using the candidates to determine global extrema
    06:34
  • 5.2.1 Concavity: Determining Concavity of Functions over Their Domains
    09:09
  • 5.2.2 Local Extrema: Determining the local extrema using the second derivative
    07:16
  • 5.3.1 Sketching Graphs of Functions
    08:06
  • 5.3.2 Connecting a Function, Its First Derivative, and Its Second Derivative
    07:55
  • 5.4.1 Optimization Problems
    13:10
  • 5.4.2 Exploring Behaviors of Implicit Relations
    07:00
  • 5.5.1 Easy
    0
  • 5.5.2 Intermediate
    0
  • 5.5.3 Hard
    0
  • 6.2.1 The Fundamental Theorem of Calculus
    05:41
  • 6.2.2 Interpreting the Behaviors of Integrals
    10:54
  • 6.2.3 Properties of Definite Integrals
    09:15
  • 6.3.1 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
    20:42
  • 6.3.2 Integration by Substitution
    10:21
  • 6.3.3 Integration by Parts
    12:14
  • 6.3.4 Using Linear Partial Fractions
    13:46
  • 6.3.5 Evaluating Improper Integrals
    04:34
  • 6.3.6 Selecting Techniques for Antidifferentiation
    05:31
  • 6.4.1 Easy
    0
  • 6.4.2 Intermediate
    0
  • 6.4.3 Hard
    0
  • 7.2.1 Slope Fields - Sketching Slope Fields and reasoning using the slope fields
    15:07
  • 7.3.1 Approximating Solutions Using Euler's Method
    16:51
  • 7.3.2 Separation of Variables - General Solution and Particular Solution
    14:46
  • 7.3.3 Exponential Growth and Decay - Exponential models with Differential Equations
    27:17
  • 7.3.4 Logistics Models with Differential Equations
    14:29
  • 7.4.1 Easy
    0
  • 7.4.2 Intermediate
    0
  • 7.4.3 Hard
    0
  • 8.2.1 Finding the Area Between Curves Expressed as Functions of x
    06:53
  • 8.2.2 Finding the Area Between Curves Expressed as Functions of y
    06:46
  • 8.2.3 Finding the Area Between Curves that Intersect at More than Two Points
    07:06
  • 8.3.1 Volumes with Cross Sections : Squares and Rectangles
    08:11
  • 8.3.2 Volumes with Cross Sections : Triangles and Semicircles
    08:54
  • 8.4.1 Volumes with Revolution - Disc Method
    10:15
  • 8.4.2 Volumes with Revolution - Washer Method
    06:52
  • 8.4.3 The Arc Length of a Curve
    05:45
  • 8.5.1 Easy
    0
  • 8.5.2 Intermediate
    0
  • 8.5.3 Hard
    0
  • 9.1.1 Parametric Functions - Definition and Differentiation
    12:52
  • 9.1.2 Finding arc lengths of curves given by parametric equations
    08:28
  • 9.2.1 Vector-Valued Functions: Definition and Differentiation
    12:50
  • 9.2.2 Vector-Valued Functions: Integration
    05:53
  • 9.2.3 Solving motion problems using parametric and vector valued functions
    09:40
  • 9.3.1 Defining polar coordinates and differentiating in polar forms
    16:56
  • 9.3.2 Finding the area of a polar region or the area bounded by a single polar curve
    11:42
  • 9.4.1 Easy
    0
  • 9.4.2 Intermediate
    0
  • 9.4.3 Hard
    0
  • 10.1.1 Infinite Series: Defining convergent and divergent infinite series
    08:38
  • 10.1.2 Geometric Series Test: Convergence of an infinite geometric series
    09:36
  • 10.1.3 The n-th term test for divergence
    06:04
  • 10.1.4 Integral test for convergence
    10:09
  • 10.1.5 Harmonic series and p-series
    06:35
  • 10.2.1 Comparison test
    11:52
  • 10.2.2 Alternating series test
    10:17
  • 10.2.3 Ratio test for convergence
    10:19
  • 10.2.4 Radius and interval of convergence of power series
    12:08
  • 10.2.5 Power Series: Maclaurin Series and Taylor Series
    16:47
  • 10.3.1 Easy
    0
  • 10.3.2 Intermediate
    0
  • 10.3.3 Hard
    0
설명

천재호 선생님의 AP Calculus AB/BC 강좌입니다. 

*AB + BC Full Set는 따로 구매하는 것 보다 수강 기간이 훨씬 길고 할인이 높습니다.

*천재호 선생님의 강좌는 각 단원별 상/중/하 문제풀이도 포함되어 있습니다!

*수학의 기초가 약한 학생이라도 따라올 수 있도록 설계되어 있습니다.

 

일시정지 기간: 20일 4회

 

전체 과정에서 다루는 내용은 다음과 같습니다. 

Unit 0. Prerequisites

Unit 1. Limits and Continuity

Unit 2. Differentiation: Definition and Fundamental Properties

Unit 3. Differentiation: Composite, Implicit, and Inverse Functions

Unit 4. Contextual Applications of Differentiation

Unit 5. Analytical Applications of Differentiation

Unit 6. Integration and Accumulation of Change

Unit 7. Differential Equations

Unit 8. Applications of Integration

Unit 9. Parametric Equations, Polar Coordinates, and Vector-Valued Functions

Unit 10. Infinite Sequences and Series

 

 

교재 다운받는 방법:

인강 수강 시에 선생님의 핵심 노하우가 담긴 필기용 교재를 학생분께 PDF로 드립니다. 

1) 인강 결제 후에 왼쪽 상단에 있는 "내 강의실"에서 구매한 강의를 누르면 아래 사진과 같은 수강 페이지가 보이게 됩니다. 

2) 각 단원의 첫 번째 영상을 보면 "첨부파일" 버튼이 있는데, 이를 누르면 PDF가 열려서 다운이 가능합니다^^

 

 

질문하기 방법:

인강 수강 시에 강의에서 궁금한 내용을 올리시면 다음날 까지는 답변을 드려요~

선생님의 빠르고 정확한 답변을 위해 학생분들은 아래 형식을 꼭 지켜주세요! 

 

1. 궁금한 부분의 강의 영상 번호 (1.1.1) 

2. 강의 영상의 시간

3. 궁금한 내용을 구체적으로!

 

 

 

 

강사 평점

3.5

코멘트