AP Calculus AB + BC: Full Set
Chapter: 0~10
-
무료 수업 33:26
-
0.1.2 Finding zeroes/ Roots of a function16:42
-
0.2.1 Definition of exponentials and Exponential Laws19:06
-
0.2.2 Definition of logarithms and logarithm laws18:25
-
무료 수업 11:26
-
1.1.2 Estimating limits from graphs15:07
-
1.1.3 Algebraic prperties of limits and manipulation of limits to determine the limit21:53
-
1.1.4 The Squeeze Theorem05:48
-
1.2.1 Definition of Continuity at a point10:32
-
1.2.2 Types of Discontinuities12:37
-
1.2.3 Confirming Continuity over an Interval12:52
-
1.2.4 Removing Discontinuities15:59
-
1.2.5 Connecting Infinite Limits and Vertical/Horizontal Asymptotes15:25
-
1.2.6 Working with the Intermediate Value Theorem (IVT)10:30
-
무료 수업 14:24
-
2.1.2 Defintion of differentiation (Fundamental Theorem of Calculus)24:32
-
2.2.1 Basic differentiation laws - how to differentiate various types of functions? (ft. power rule, constant, sum/difference, constant, trigonomtry,exponentials, logarithms, product rule, quotient rule)19:14
-
2.2.2 The meaning of the derivative at a specific point20:41
-
무료 수업 08:56
-
3.1.2 The chain rule - why we do NOT need the chain rule?13:06
-
3.1.3 Implicit Differentiation19:04
-
3.3.1 Calculating Higher Order Derivatives13:44
-
3.3.2 Selecting Procedures for Calculating Derivatives15:13
-
무료 수업 22:54
-
4.1.2 Straigt-Line Motion: Connecting Position, Velocity, and Acceleration16:11
-
4.1.3 Rate of Change in Applied Contexts Other than Motion10:02
-
무료 수업 05:40
-
5.1.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points18:00
-
5.1.3 Increasing/Decreasing Functions: Determining Intervals on Which a Function is Increasing or Decreasing11:15
-
5.1.4 First Derivative Test: Using the First Derivative Test to Determine Local Extrema08:05
-
5.1.5 Global Extrema: Using the candidates to determine global extrema06:34
-
5.2.1 Concavity: Determining Concavity of Functions over Their Domains09:09
-
5.2.2 Local Extrema: Determining the local extrema using the second derivative07:16
-
5.3.1 Sketching Graphs of Functions08:06
-
5.3.2 Connecting a Function, Its First Derivative, and Its Second Derivative07:55
-
5.4.1 Optimization Problems13:10
-
5.4.2 Exploring Behaviors of Implicit Relations07:00
-
무료 수업 07:52
-
6.1.2 Riemann Sums: Approximating Areas with Riemann Sums, Summation Notation, and Definite Integral Notation31:21
-
6.2.1 The Fundamental Theorem of Calculus05:41
-
6.2.2 Interpreting the Behaviors of Integrals10:54
-
6.2.3 Properties of Definite Integrals09:15
-
6.3.1 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation20:42
-
6.3.2 Integration by Substitution10:21
-
6.3.3 Integration by Parts12:14
-
6.3.4 Using Linear Partial Fractions13:46
-
6.3.5 Evaluating Improper Integrals04:34
-
6.3.6 Selecting Techniques for Antidifferentiation05:31
-
무료 수업 15:13
-
7.1.2 Verifying Solutions for Differential Equations09:55
-
7.3.1 Approximating Solutions Using Euler's Method16:51
-
7.3.2 Separation of Variables - General Solution and Particular Solution14:46
-
7.3.3 Exponential Growth and Decay - Exponential models with Differential Equations27:17
-
7.3.4 Logistics Models with Differential Equations14:29
-
무료 수업 07:12
-
8.1.2 Connecting Position, Velocity, and Acceleration of functions Using Integrals07:46
-
8.2.1 Finding the Area Between Curves Expressed as Functions of x06:53
-
8.2.2 Finding the Area Between Curves Expressed as Functions of y06:46
-
8.2.3 Finding the Area Between Curves that Intersect at More than Two Points07:06
-
8.3.1 Volumes with Cross Sections : Squares and Rectangles08:11
-
8.3.2 Volumes with Cross Sections : Triangles and Semicircles08:54
-
8.4.1 Volumes with Revolution - Disc Method10:15
-
8.4.2 Volumes with Revolution - Washer Method06:52
-
8.4.3 The Arc Length of a Curve05:45
-
9.1.1 Parametric Functions - Definition and Differentiation12:52
-
9.1.2 Finding arc lengths of curves given by parametric equations08:28
-
9.2.1 Vector-Valued Functions: Definition and Differentiation12:50
-
9.2.2 Vector-Valued Functions: Integration05:53
-
9.2.3 Solving motion problems using parametric and vector valued functions09:40
-
9.3.1 Defining polar coordinates and differentiating in polar forms16:56
-
9.3.2 Finding the area of a polar region or the area bounded by a single polar curve11:42
-
10.1.1 Infinite Series: Defining convergent and divergent infinite series08:38
-
10.1.2 Geometric Series Test: Convergence of an infinite geometric series09:36
-
10.1.3 The n-th term test for divergence06:04
-
10.1.4 Integral test for convergence10:09
-
10.1.5 Harmonic series and p-series06:35
-
10.2.1 Comparison test11:52
-
10.2.2 Alternating series test10:17
-
10.2.3 Ratio test for convergence10:19
-
10.2.4 Radius and interval of convergence of power series12:08
-
10.2.5 Power Series: Maclaurin Series and Taylor Series16:47
천재호 선생님의 AP Calculus AB/BC 강좌입니다.
*AB + BC Full Set는 따로 구매하는 것 보다 수강 기간이 훨씬 길고 할인이 높습니다.
*천재호 선생님의 강좌는 각 단원별 상/중/하 문제풀이도 포함되어 있습니다!
*수학의 기초가 약한 학생이라도 따라올 수 있도록 설계되어 있습니다.
일시정지 기간: 20일 4회
전체 과정에서 다루는 내용은 다음과 같습니다.
Unit 0. Prerequisites
Unit 1. Limits and Continuity
Unit 2. Differentiation: Definition and Fundamental Properties
Unit 3. Differentiation: Composite, Implicit, and Inverse Functions
Unit 4. Contextual Applications of Differentiation
Unit 5. Analytical Applications of Differentiation
Unit 6. Integration and Accumulation of Change
Unit 7. Differential Equations
Unit 8. Applications of Integration
Unit 9. Parametric Equations, Polar Coordinates, and Vector-Valued Functions
Unit 10. Infinite Sequences and Series
교재 다운받는 방법:
인강 수강 시에 선생님의 핵심 노하우가 담긴 필기용 교재를 학생분께 PDF로 드립니다.
1) 인강 결제 후에 왼쪽 상단에 있는 "내 강의실"에서 구매한 강의를 누르면 아래 사진과 같은 수강 페이지가 보이게 됩니다.
2) 각 단원의 첫 번째 영상을 보면 "첨부파일" 버튼이 있는데, 이를 누르면 PDF가 열려서 다운이 가능합니다^^

질문하기 방법:
인강 수강 시에 강의에서 궁금한 내용을 올리시면 다음날 까지는 답변을 드려요~
선생님의 빠르고 정확한 답변을 위해 학생분들은 아래 형식을 꼭 지켜주세요!
1. 궁금한 부분의 강의 영상 번호 (1.1.1)
2. 강의 영상의 시간
3. 궁금한 내용을 구체적으로!
